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County-level Projections of COVID-19 Transmission in the United States 
 

Background 
The novel coronavirus SARS-CoV-2 has caused a pandemic that has already infected 32.6 million 
people with more than 580,000 deaths in the United States as of May 12, 2021. As local areas have been 
responding to emerging risk of outbreaks, many models that predict the case burden over the next few 
months project for large areas (state or national), using a fixed reproduction number (R) estimated 
from national data, do not consider city characteristics (e.g., population density, demographics) that 
could impact transmissibility, and don’t directly incorporate the effect of social distancing. In addition, 
these models do not consider time-varying exposures such as temperature and humidity that might 
affect SARS-CoV-2 transmission, as was demonstrated during the winter peaks of 2020-21. There 
remains an urgent need to project how SARS-CoV-2 transmission will occur week to week more 
selectively across U.S. cities that are very different geographically and with respect to the underlying 
risks of their populations. Our objective is to project the trajectory of the COVID-19 epidemic in local 
U.S. communities by assuming that R is not fixed, will vary significantly across the country, and will 
vary specifically in relationship to temperature, humidity and social distancing strategies. In 
conjunction with other national models, these data can provide complementary information to better 
guide communities as they respond to emerging risk in the weeks ahead. 
 
Methods  
We have expanded our projections to include 821 counties with active outbreaks (up from 211 in our 
original analyses), representing 82% of the total U.S. population, which have been curated in several 
ways. The principal inclusion criteria since the project’s inception has been 1) counties with at least 
100,000 residents or counties with the state capital city; 2) counties with more than 3 days of daily case 
counts exceeding 5, as of June 7, 2020; and 3) counties with average daily case counts exceeding 5 
(minimum threshold activity), between the date of disease outbreak in the county and July 27, 2020. 
We have now also added counties with a population exceeding 40,000 residents and a minimum 
population density of 250 people per square mile, and have had at least 5 daily cases between June 23 
and July 6, 2020. Additionally, we now include any county with an average of 20 or more daily cases 
between June 23 and July 6, 2020, regardless of other inclusion criteria.    
 
Daily case counts of SARS-CoV-2 infection by county are obtained from The New York Times and 
USAFACTS (usafacts.org). We obtain data about county and population characteristics from the 
American Community Survey, Behavioral Risk Factor Surveillance System and other surveys of the 
population. For each county, we obtain data on social distancing, defined as the percent change in visits 
to non-essential businesses in each county (Unacast). We obtain daily wet-bulb temperatures (an index 
that combines temperature and humidity) from the National Oceanic and Atmospheric Administration 
Local Climatological Data from 2010 to the current date. R estimates in each county are informed by 
methods from Wallinga & Teunis 2004 and Cori et al. 2013. Distributed lag non-linear mixed effects 
models (Gasparrini et al. 2010) allow us to examine simultaneously the cumulative exposure-response 
relationship between daily wet-bulb temperatures over a lag period of 4 to 14 days with R. In addition to 
the coefficients from the distributed lag non-linear models, the predictive models also include, at the 
county level, a rolling average of lagged social distancing between 4-14 days, population density, 
diabetes prevalence, percent of residents over 65 years of age, percent of population below 200% of 
poverty level, household crowding, absolute testing positivity (rolling 7-day average), change of testing 
positivity (rolling 7-day average), and random effects for county, metropolitan area and climate zone  
(Baechler et al., 2015). Models predicting Rs and daily cases over the next four weeks are trained using 
data from between April 1 and present, on a subset of 525 counties. Each week, we choose a final model 
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from among three choices based on validations using actual data from the previous two weeks for each 
state. For predictions, we use historical averages of daily temperature and humidity; testing positivity 
rate and social distancing are held constant at their current 7-day averages. All states are now 
represented in the model. 
 
Preliminary Findings  
The trajectory of real-time R varies greatly across counties, with variance in both the peak and slope of 
R over time and resultant surge of SARS-CoV-2 cases. Social distancing, population density, and 
temperature/humidity all affect R over time, while standardizing on population characteristics. Higher 
temperatures and humidity have not reduced transmission risk beyond spring-time temperatures; if 
anything, the gathering effects of summer have conferred increased risk since springtime. However, 
seasonal models confirmed increased effects of colder temperatures on transmission throughout the 
winter of 2020-21, and future models foresee declining transmission in the presence of springtime 
weather and gathering cumulative incidence from natural infection or acquired immunity via 
vaccination. 
 
Implications 
These county-level analyses allow real-time modeling of SARS-CoV-2 transmission and provide 
complementary information to the other national models currently used to project coronavirus 
transmission. The consideration of county-level characteristics, daily temperatures, and direct 
measurement of the effect of social distancing directives reveal marked heterogeneity in the magnitude 
and timing of surges of SARS-CoV-2 cases in the United States. These results can inform consideration 
of selective strategies to mitigate SARS-CoV-2 transmission and assess health care system capacity 
constraints across the country. They can also serve as an early warning indicator for communities and 
their residents to reassess and modify behavior in response to forecasted resurgence risk. 
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